
Harnessing a GPU’s Tensor Cores for Fast FP16
Arithmetic to Speed up Mixed-Precision Iterative

Refinement Solvers
Azzam Haidar∗, Stanimire Tomov∗, Jack Dongarra∗†‡ Nicholas J. Higham §

{haidar|tomov|dongarra}@icl.utk.edu,
∗Innovative Computing Laboratory (ICL), University of Tennessee, Knoxville, USA

†Oak Ridge National Laboratory, USA
‡University of Manchester, UK

§School of Mathematics, University of Manchester, UK

Abstract—The use of low-precision arithmetic in computing
has been a powerful tool for accelerating numerous scientific
computing applications—and artificial intelligence in particular.
Here, we present an investigation showing that other high-
performance computing (HPC) applications can also harness this
power. Specifically, we use the general HPC problem, Ax = b,
where A is a large dense matrix, and a double precision (FP64)
solution is needed for accuracy. Our approach is based on the
mixed-precision (FP16→FP64) iterative refinement technique,
and we generalize and extend prior advances into a framework,
for which we develop architecture-specific algorithms and highly
tuned implementations. These new methods show how using
half-precision Tensor Cores (FP16-TC) for the arithmetic can
provide up to 4× speedup. This is due to the performance boost
that the FP16-TC provide and to the improved accuracy, which
outperforms the classical FP16 because the GEMM accumulation
occurs in FP32-bit arithmetic.

Index Terms—FP16 Arithmetic, Half Precision, Mixed Preci-
sion Solvers, Iterative Refinement Computation, GPU Comput-
ing, Linear Algebra

I. INTRODUCTION

To take advantage of new processor designs, algorithms
must also be redesigned. This is especially true and chal-
lenging in the area of dense linear algebra, where many
algorithms are expected to run close to the machine’s peak
performance. For example, LINPACK was redesigned to move
away from using vector algorithms that were useful on the
vector machines of the 1970s to the new Linear Algebra
PACKage (LAPACK) that uses blocked algorithms on cache-
based processors. LAPACK itself had to be redesigned for
multi-core and heterogeneous many-core architectures, which
resulted in the Matrix Algebra on GPU and Multicore Archi-
tectures (MAGMA) library [20].

To this end, this paper discusses the redesign of a mixed-
precision iterative refinement technique to harness the fast
FP16-TC arithmetic available in the latest NVIDIA GPUs.
Modern architectures are trending toward multiple floating-
point arithmetic precisions being supported in the hardware,
and lower precisions are often much faster than higher pre-
cisions. For example, single-precision, 32-bit floating-point
arithmetic (FP32) is usually twice as fast as double-precision,

64-bit floating-point arithmetic (FP64). Recently, various ma-
chine learning and artificial intelligence neural network appli-
cations increased the need for FP16 arithmetic (see Figure 1),
and vendors started to accelerate it in hardware. Currently, the
the V100 TCs can accelerate FP16 up to 85 teraFLOP/s—
vs. 7 teraFLOP/s for FP64 and 14 teraFLOP/s for FP32
on a V100 through PCIe. Developing algorithms to use this
hardware efficiently will be highly beneficial in HPC.

Fig. 1. IEEE 754 FP16 format. This representation has 3.311 decimal digits
of accuracy and a maximum representable value of 65,504.

The mixed-precision iterative refinement technique is used
to accelerate Ax = b solvers, where A is a dense matrix.
The main idea is to compute the lower-upper (LU) factor-
ization of A in low precision and use that factorization as a
preconditioner in an iterative refinement in higher-precision.
These methods have been studied in the past, as discussed
in Section II. A persistent challenge has been to redesign
the techniques for new architectures and to develop highly
tuned implementations that resolve computational issues like
inefficient parallelization, scaling, and use of mixed-precision
calculations. A lot of the theoretical work with numeri-
cal experiments on small problems has been restricted on
MATLAB or reference implementations, which are prone to
overlook computational issues when achieving acceleration
using highly tuned standard solvers. To address this problem
on GPU Tensor Cores, we leverage building blocks from
the MAGMA library, which provides state-of-the-art, high-
performance algorithms like LU and others—including a set
of highly tuned mixed-precision iterative algorithms for FP32
→FP64 arithmetic [21].

II. RELATED WORK

Iterative refinement is a well-established technique that
dates back to Wilkinson in the 1940s. The idea is to im-
prove the solution of a linear system by solving the cor-
rection equation and adding the correction to the original
(see Wilkinson [22], Moler [14], Stewart [19], and Dem-
mel [6]). For more comprehensive treatment see Chapter 12 in
Higham [11]). In iterative refinement, the three tasks (original
solve/factorization, residual computation, and correction equa-
tion solve) can be done in the same precision (fixed precision)
or in different precisions (mixed precision). Fixed precision
iterative refinement was analyzed by Skeel [18] for an LU
solver and extended by Higham [10] for a general solver. In
the 2000s, motivated by processors equipped with FP32 speed
2× that of FP64, mixed precision iterative refinement—where
the heavy LU factorization done in FP32 and everything else
done in FP64—was explored in [3], [12].

Replacing the direct triangular solve of the correction equa-
tion with an iterative method leads to “nesting” of two iterative
methods, which are also called “inner–outer” iterations, and
has been studied both theoretically and computationally [8],
[15], [17], as well as used in mixed-precision computation
scenarios [2]. Recently, Carson and Higham [4], [5] analyzed
the convergence property of a three precision iterative re-
finement scheme (factorisation precision, working precision,
residual precision) and concluded that if the condition of A
is not too bad, κ∞(A) < 104, then using FP16 for the O(n3)
portion (e.g., the LU factorisation) and the (FP32, FP64) or
the (FP64, FP128) as the (working, residual) precision for
the O(n2) portion (refinement loop), one can expect to achieve
forward and backward error on the order of 10−8 and 10−16

respectively. The same study also showed that when using
the Generalized Minimal RESidual (GMRES) preconditioned
by the FP16 LU as the refinement procedure, the constraint
on the condition number can be relaxed to be κ∞(A) < 108

when the (working, residual) precision is (FP32, FP64) and
to 1012 when the (working, residual) precision is (FP64,
FP128). The study provided error analysis of the iterative
refinement algorithms, where the authors derived conditions
for convergence and bounds for the attainable norm-wise
forward error and norm-wise and component-wise backward
errors using such techniques.

An investigation of similar iterative refinement methods on
earlier generations of GPUs can be found in [9]. With the
announcement of NVIDIA’s V100 Tensor Cores that improve
numerical precision and speed for FP16, it is our intention to
comprehensively investigate how the V100 opens a new world
of opportunities in matrix computations.

III. CONTRIBUTIONS

The primary goal of this paper is to propose and imple-
ment a high-performance framework for the mixed-precision
iterative refinement technique that makes use of GPU Tensor
Core-accelerated FP16-TC. To this end, we will:
• introduce a new class of multi-precision dense matrix

factorization algorithms; and here we mean that the fac-

torization itself is implemented in multi-precision despite
the fact the iterative refinement is mixed precision.

• develop a framework for exploiting GPU TCs in
mixed-precision (FP16-FP32/FP64) iterative refine-
ment solvers and describe the path to develop high-
performance, Tensor Cores-enabled dense linear algebra
building blocks kernels that can be used to exploit the
FP16-TC in HPC applications;

• present a study on algorithmic variants of the IR tech-
niques;

• illustrate that a number of problems can be accelerated
up to 4× through the mixed-precision solvers using fast
FP16-TC, 3× using the basic FP16 mixed-precision
solver, or 2× using the FP32 arithmetic;

• provide an analysis of the numerical behavior of the
proposed mixed-precision, TC-accelerated solvers on dif-
ferent types of matrices; and

• quantify—in practice—the performance and limitations
of this approach on V100 GPUs using TC.

The developments will be released through an open-source
library to make these experiments independently reproducible
and to allow the scientific community build and study different
type of research on the top of this work.

IV. METHODS

We consider two methods to extract higher precision so-
lutions from low-precision factorizations. The first method
is the standard iterative refinement (IR) as implemented in
LAPACK, and the second method is iterative refinement using
GMRES for the correction equation that we denote by IRGM.
The IR method is a well-established technique, while IRGM
with GMRES is more recent and holds more promise for
exploiting low precision in factorizations.

A. Background

Below we expound on the IR and IR with GMRES
methods.

1) Iterative Refinement: The IR technique improves the
accuracy of a computed solution, x̂, for a linear system of
equations, Ax = b. Here, we let the initial solution be x0 = 0,
and the iterative refinement is a series of iterations:

1) Residual computation: Compute the residual r =
b−Axi.

2) Correction equation: Solve Ac= r (e.g., using an
initial LU factorization).

3) Solution update: Correct the current solution
xi+1 = xi + c.

If all three steps can be computed exactly, then the IR
algorithm completes in one iteration. However, with the finite
precision in floating point format and arithmetic, the above
iterations must be repeated.
IR is usually carried out with Gaussian elimination with

partial pivoting. In this context, the correction equation is
solved by the Gaussian elimination’s LU factors. We call the
precision uuu (machine epsilon) in which steps 1 and 3 are
carried out. Step 2 is performed in the precision u f which

is the precision of the LU factorization, because it uses the
“L” and “U” factors to solve the correction equation Ac = r
and then it cast the solution “c” to the working precision uuu.
If the Gaussian elimination is also computed in the precision
uuu, the method is called fixed-precision IR, otherwise if the
Gaussian elimination is performed at lower precision uuu f , it
is called mixed-precision IR. The fixed-precision IR can be
used to improve the backward error of a Gaussian elimination
without a strong stabilizing pivoting strategy [1], [7], [13],
[18]. On the other hand, the mixed-precision IR also improves
the forward error to the working precision—if the condition
number of A is not too large: uuu f κ∞(A)≤ 1.

The economics of mixed-precision IR using low-precision
LU, compared to directly solving with higher precision LU,
depend on the relative speed of low-precision arithmetic and
on the cost of the refinement process. It is therefore a function
of the executing hardware, the IR configuration, and also of
the property of the matrix A (condition number). In the specific
case of the V100 GPU, the practical speed of FP16-TC is
about 12× faster than FP64 for square Xgemm and is about
6× faster for the rank-k update Xgemm that is used by the
LU factorization (see Figure 2a) which pushes the balance in
favor of mixed-precision IR.

2) Iterative Refinement with Preconditioned GMRES: GM-
RES [16] is a popular Krylov subspace iterative solver for
solving a general linear system of equations. The Stopping
criterion of GMRES can be defined by the user to a certain
value, and the obtained solution is guaranteed to be down
to that value in the normwise backward error stability. For
that, we decided to propose another variant of the iterative
refinement method by replacing step ”2” of the classical IR al-
gorithm described above by a preconditioned GMRES to solve
the correction system Ac = r. GMRES will be preconditioned
by the low precision LU meaning. Our idea here is that, the
GMRES solver will provide a better and more stable solution
to Ac = r than the basic triangular solve which is directly
affected by the quality of the LU factors, in particular when
the matrix A is ill-conditioned or in other term when the LU
factorization is highly perturbed due to rounding error caused
by the low precision. Using GMRES, we can still guarantee
that the solution of the correction equation Ac = r is down to
the stopping criterion accuracy requested by the algorithm. The
stopping criterion is chosen to be the same as the low precision
arithmetic used during the factorization (e.g., we use 10−4 or
10−8 for when the LU is in FP16 or FP32 respectively).
Since the purpose of this paper is rather about practical usage
and possible performance gain than about error analysis, we
guide the reader that [4], [5] provide a detailed error analysis
study about the IR and IRGM techniques.

We describe both the IR and IRGM methods in Algorithm 1
in a unified framework, where the difference between them
is in the correction equation solver (LU or preconditioned
GMRES).

Data: An n×n matrix A, and size n vector b.
Result: A solution vector x(i) approximating x in Ax = b,

and an LU factorization of A = LU .
(FP16) Solve Ax(1) = b using FP16 LU factorization

and triangular solve;
i← 1;
repeat

(FP64) Compute residual r(i)← Ax(i)−b;
(Low Precision) Solve Ac = r(i) using

IR: triangular solve using the LU factors, or
IRGM: GMRES preconditioned by M = LU ;

(FP64) Update x(i+1) = x(i)− c;
i← i+1;

until x(i) is accurate enough;
Algorithm 1: IR: mixed-precision iterative refinement
using triangular solve. IRGM: mixed-precision iterative
refinement with GMRES to solve correction equation.

B. Algorithmic Advancements

A recent study by Carson and Higham [4] provides an
analysis of using three precisions for the IR iterations: FP32
by default, FP16 for the LU factorization, and FP64 for
the residual computation (Table I). For a matrix with a
condition number of κ∞(A)< 104, the IR converges to FP32
accuracy. Furthermore, if we replace the correction step (e.g.,
the direct LU triangular solve of step 2 of the IR algorithm
in Section IV-A1) by the GMRES is preconditioned by the
low-precision LU, the restriction on the condition number
can be relaxed to κ∞(A) < 108. However, it remains unclear
how fast GMRES converges. Inspired by the analysis of
the aforementioned study and the performance potential of
FP16 on the NVIDIA V100 GPUs, we developed a practical
implementation of a similar IR variant with GMRES denoted
by IRGM. The implementation is different from [4] in that:

• 1) we only use two precisions—FP16 for the LU fac-
torization O(n3) work and FP64 for the high precision
for everything else; This decision is driven by the work
done by [3], [12] which studied and showed the feasibility
of the two precisions iterative schema and by the com-
plexity required to implement three precision algorithm
in particular the quad precision.

• 2) we proposed a multi-precision factorization algorithms.
Our LU algorithm uses both FP16 and FP32 preci-
sion during its progress. We only use FP16 matrix
multiplication (hgemm) in the LU factorization, while
everything else is in FP32—effectively making our LU
multi-precision. This decision is driven by the idea to
compute the numerical sensitive portion of the algorithm
in higher precision to avoid underflow and overflow that
can easily occur when operating in full FP16.

Type Range Unit Roundoff Error
FP16 10±5 5×10−4

FP32 10±38 6×10−8

FP64 10±308 1×10−16

TABLE I
IEEE PRECISIONS AND NUMERICAL PROPERTIES.

C. Tensor Cores in the V100 and their Use in Half-Precision
LU

Driven primarily by the need for training and inferencing
in deep learning, the latest offering from NVIDIA—the Tesla
V100 GPU based on the Volta architecture—provides specific
programmable matrix multiply–accumulate units that are said
to deliver a theoretical peak performance of 110 teraFLOP/s
in FP16-TC. The V100 has 8 Tensor Cores per streaming
processor for a total of 640 Tensor Cores. A Tensor Core
can compute D = A∗B+C per clock, where all matrices are
4× 4 in size (i.e., 64 floating point FMA mixed-precision
operations per clock). The A,B must be in FP16, but the C,D
can be in either FP16 or FP32. The multiplication occurs
in FP16 and is accumulated in FP32 with other products.
In our experiment, FP16-TC denotes the use of the Tensor
Core FP16 routine. We expect significant improvement in
numerical behavior over the basic FP16 arithmetic, where all
calculations are rounded and accumulated in FP16. The Ten-
sor Core caters primarily to deep learning applications, where
lower precision is tolerable, and is not straightforward for use
in more numerically demanding applications (e.g., numerical
simulations and linear solvers in particular). Since TC provide
a large speedup for matrix-multiplication, it can be expected
to accelerate FP16 dense matrix factorizations, which are
rich in matrix multiplication operations. The challenge lies in
how to use the low-precision factorization results to achieve
FP32/FP64 level accuracy effectively and efficiently.

D. Convergence Consideration

This subsection discusses the convergence rate of the IR
and IRGM methods. Unfortunately, while some convergence
conditions are known for classical IR—linearly convergent
except for the hard case, where the LU factorization is not
stable and the IR diverge—the convergence rate of IRGM is
difficult to predict due to the GMRES behavior.

The latest analysis for mixed precision iterative refinement
can be found in [4], [5]. It yields the sufficient condition
for convergence κ∞(A) < 104 for IR. It would provide the
sufficient condition for convergence κ∞(A) < 108 for IRGM.
If quadruple precision were used in computing the residuals
it can be even relaxed to κ∞(A) < 1012. For GMRES-based
solvers, the convergence rate of GMRES is complicated to
analyze, and the low accuracy FP16 preconditioner means
we have little knowledge about the preconditioned matrix.
In general, for a normal matrix, A, the GMRES converges
slower as the condition number of A increases. For a non-
normal matrix, the convergence rate cannot be predicted by
condition number alone. In practice, the convergence rate
depends on the matrix type, the condition number, and the

matrix size. Therefore, in the next section we decided to
study our two proposed algorithms by covering matrices with
different spectrum, sizes, and types.

V. ANALYSIS AND EXPECTED PERFORMANCE

The primary motivation for using FP16 arithmetic is its
unprecedented high performance compared to higher preci-
sions. This performance is quantified for the V100 GPU
in Figure 2. The PCIe V100 has a practical peak of 6.8
teraFLOP/s in FP64, 14 teraFLOP/s in FP32, 28 teraFLOP/s
in FP16, and an incredible 85 teraFLOP/s in FP16-TC
(Tensor Cores). The performance of the LU factorization relies
mostly on the performance of the Schur update (or rank-k
Xgemm update), which is a tall-skinny matrix multiplication
that occurs during each step of the LU algorithm. For that,
to understand/model how the LU factorization could benefit
from the FP16 arithmetic, we first study the performance of
the Xgemm routine. This is shown in Figure 2a for the four
available precisions (FP64, FP32, FP16, and FP16-TC).
We consider the FP16-TC as a separate precision, since it
consists of a mixed-precision Xgemm, where the multiplication
is performed in FP16, while the accumulation is in FP32.
Thus, FP16-TC is more accurate than a homogeneous FP16
computation. We also note that, in addition to being more
accurate, the FP16-TC is also much faster due to the use of
Tensor Cores.

As shown in Figure 2a, the FP16-TC hgemm-TC operating
on square matrices is about 12× faster than its FP64 dgemm
counterpart. Furthermore, and as expected, the FP16 hgemm
is 2× faster than the FP32 sgemm and about 4× faster than
the FP64 dgemm. Figure 2a also depicts the performance
of the Xgemm for a rank-k update (dashed lines). This is
the type of operation needed by the LU and thus it give
us an indicator of the performance ceiling/bound of any LU
implementation. The rank-k update hgemm-TC is slower than
the square hgemm-TC but still carries an attractive speedup
compared to the dgemm. The rank-k hgemm-TC achieves
about 35 teraFLOP/s; compare that to about 25 teraFLOP/s
for the rank-k hgemm, 13 teraFLOP/s for the rank-k sgemm,
and around 6 teraFLOP/s for the rank-k dgemm.

We also developed a multi-precision LU factorization in
FP16, where we performed the numerically sensitive portion
of the code in FP32 and only the GEMM’s are in FP16
or FP16-TC. The idea here is to provide a better stable
LU factorization than the fully FP16 implementation without
loss of performance. Figure 2b shows the performance for the
four precisions. As expected, our LU implementation follows
roughly the same trend as the Xgemm kernel for large n which
prove that our implementation is very well optimized and is
able to attain the theoretical upper bound. Our hgetrf-TC
and hgetrf solvers achieve a speedup from 3× to 4× over
the dgetrf and a 2× speedup over sgetrf.

This section is dedicated to the theoretical performance
analysis of the mixed precision (MP) algorithms for linear
solvers. The idea is to understand and predict when iterative
refinement techniques can be used in a beneficial fashion.

m=n
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 TC square
FP16 TC k=256

FP16 square
FP16 k=256

FP32 square
FP32 k=256

FP64 square
FP64 k=256

(a) Performance of the rank-k update (Xgemm function) used in Xgetrf.

matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26 FP16-TC (Tensor Cores) hgetrf LU

FP16 hgetrf LU
FP32 sgetrf LU
FP64 dgetrf LU

(b) Performance of the Xgetrf routine.

Fig. 2. Performance of the three arithmetic precisions obtained on a Nvidia V100 GPU.

From a performance point of view, an algorithm is beneficial
when it reaches the solution in a time faster than the reference
one (which is the FP64 dgesv routine in our case). The
iterative refinement solvers consist of an LU factorization in
low precision εFPXX < εFP64, and then, iterative loop based
on either classical IR or GMRES (as described above) can be
used to improve the solution to εFP64 which is comparable to
the reference LUFP64 arithmetic. Thus, let us define:

time for FP64 =
2n3

3Pdgetr f
+

2n2

Pdtrsv
(1)

time for MP =
2n3

3PXgetr f
+ k(

2n2

Pdgemv
+

2n2

PXtrsv
+ξ) (2)

where P denotes the performance of the corresponding routine,
and k denotes the number of iterations required by the MP
solver to achieve the double precision solutions and where
ξ refer to the other negligible amount of work required by
the iterative refinement such as norm computation, residual
calculation, pivoting, synchronizations. From practical and
experiment results, we found that ξ is negligible compared
to the cost of the dgemv and the Xtrsv.

Based on the LU performance results provided in Figure 2b
and on the benchmark of the dgemv and Xtrsv routine, we
illustrate in Figure 3 the expected speedup of our three MP
routines (e.g., dhgesv-TC, dhgesv, dsgesv) as function
of the number of iterations k, where we can see how the
performance vary with the increases of k. Usually, a small
number of iterations is advantageous and can bring the highest
performance while a large number of iterations is going to
affect the performance.

VI. NUMERICAL BEHAVIOR DISCUSSION

Our experiments were performed on a system with two
10-core Intel(R) Xeon(R) E5-2650 v3 CPUs (20 cores total)
running at 2.30 GHz and one NVIDIA V100 PCIe GPU. To

Fig. 3. Illustration of the speedup of the three MP routines (e.g., dhgesv-TC,
dhgesv, dsgesv) over the dgesv routine as function of the number of
iterations and the matrix size.

study the proposed methods and to highlight their practical
use, we performed a large set of experiments on 21 types of
matrices, with each type featuring different properties, that
represent a wide range of problems. We found that we could
classify the 21 types of matrices using 6 representatives cases.
We first studied the numerical behavior of our iterative refine-
ment algorithms (e.g., dsgesv, dhgesv, and dhgesv-TC)
each using either the IR or the IRGM solver, and showed the
convergence history of each technique for the different types
of matrices.

This study aims to provide an analysis of each method’s
sensitivity relative to the matrix type as well as provide insight
on the performance expected from the iterative refinement
methods. For example, if an iterative refinement method
requires a large number of iterations to achieve the FP64
solution accuracy for a certain matrix type, then we could

expect that its performance compared to the standard dgesv
will degrade or be even slower. We note that the number of
iterations that we report is the total number of iterations—
including the inner GMRES iterations in the case of the IRGM
solver. This means that, in both cases, the number of iterations
is precise indicator of the time spent in the refinement loop.

Table II describes the different matrix types and sizes used
in our experiments.

Figures 4 and 5 show the convergence history of the six pro-
posed solvers (the three precision implementations each using
either IR or IRGM). They are labeled as FPXX→FP64 YY,
where “XX” corresponds to the algorithm used for the LU
factorization (FP16-TC, FP16, or FP32), and “YY” rep-
resents the iterative refinement solver (IR or IRGM) used
to attain FP64 solution accuracy. In Figure 4a, we display
the most numerically favorable type of matrix to solve—
the diagonal dominant matrix. Here, we can see that all six
variants converge in 3–5 iterations. For this type of matrix,
since the number of iterations is small, we can expect a large
speedup over the FP64 routine.

We believe that the FP32 routine will achieve a 2× speedup
and that both of the FP16 routines will achieve about 3×–4×
speedup while delivering a solution at FP64 accuracy. More
details about the performance are provided in the next section.
Figure 4b represents a matrix type that has positive eigenvalues
and singular values for which the logarithms are uniformly
distributed between 1 and 1

cond . This is slightly more difficult
than the diagonal dominant type. We observe that the conver-
gence of the FP32 remains stable at 3 iterations, while the
FP16 slightly increases to about 7–8 iterations. Interestingly,
the FP16-TC converges faster than the FP16 and slightly
slower than the FP32. This is because the accumulation in
the FP16-TC rank-k update is in FP32 arithmetic and thus
produces a better result than the FP16. This behavior can be
seen on all graphs in Figures 4 and 5.

Figure 4c shows a more difficult type of matrix with
clustered singular values and a positive eigenvalue. The FP32
method using either IR or IRGM converges as expected in 3
iterations. The FP16 IR variant converges very slowly and
needs more than 400 iterations to drive the solution to 10−9

accuracy. However, the IRGM solver (FP16 IRGM) achieves
the FP64 solution accuracy in about 14 iterations. This reveals
the sensitivity of the FP16 IR variant and highlights the
importance of using the GMRES solver inside the iterative
refinement process. We note that GMRES delivers a more
stable solution to Ac = r inside the refinement process, which
allows the IRGM method to converge faster than IR. We
also note that the diamond marker in the blue dashed line—
the curve that represents FP16 IRGM—shows the number of
outer iterations (refinements) in the IRGM solver. We can see
that the number of outer iterations is about 4, which also
proves the theory that the solution of Ac = r delivered by
GMRES is good enough to make the refinement loop converge
in 4 iterations. More details about using GMRES inside
the refinement process can be found in [4]. The FP16-TC
variants using either IR or IRGM converge in 4 iterations. This

underlines the importance of the FP32 accumulation done in
the hgemm-TC routine used in the FP16-TC variant. The
FP16-TC variant works well for this type of matrix, and we
can expect about a 4× speedup.

Figure 4d shows results on matrices with the same singular
value distribution as in Figure 4c but with complex eigenvalues
and of different positive and negative sign. When comparing
the two figures, we notice the effect of having positive eigen-
values. We also note that the FP32 routine is not affected and
converges in 4 iterations. The convergence of the FP16-TC
routine decreases slightly, requiring about 13 iterations. The
FP16 IR variant diverges, which highlights the problem with
using trsv in the classical iterative refinement to compute the
correction, as it becomes unstable when the LU factorization is
performed in FP16 and cannot bring the solution down to an
acceptable accuracy. While using GMRES, the FP16 IRGM
can bring the solution down to the FP64 accuracy in about
63 iterations.

Figure 5a shows results on matrices where all methods
behave well. Convergence was achieved in 3 iterations for
FP32, 4 iterations for FP16-TC, and 7 iterations for FP16.
Figure 5b has the same singular value distribution as Figure 5a
but not necessarily positive eigenvalues. This type is the most
difficult, and the FP16 variants using either IR or IRGM do
not converge. Note that the FP16 IRGM can converge when
allowing more than 2,000 iterations, but for our experiment we
limited the max iterations to 400, since we have seen a large
performance drop when iterations are around 200—where the
iterative refinement becomes a drawback. The FP32 variants
are not influenced by the matrix type and always converge in
about 3–4 iterations. Surprisingly, the FP16-TC behaves very
well and converges in about 18 iterations, while the FP16 did
not converge.
Lesson: For all the matrices considered, the FP16-TC
variant is the most robust and fastest in convergence
among the FP16 arithmetic-based methods. The FP32
refinement variants emphasize a consistent behavior re-
gardless of the matrix types. This observation suggests
the surprising effectiveness of the FP16 arithmetic, which
might be robust enough to be used in HPC dense linear
system solvers.

VII. EXPERIMENTAL RESULTS DISCUSSION

This section presents the performance results of our three
iterative refinement methods—dhgesv-TC, dhgesv, and
dsgesv—using either IR or IRGM, compared to the refer-
ence dgesv solver. We also depict the number of iterations
required by each method to reach FP64 accuracy. The ter-
aFLOP/s are computed based on the same formula (P= 2n3

3 time),
which means performance reflects the time to solution (e.g.,
if a method has 2× higher performance, it is 2× faster). The
performance results are presented in Figures 6 and 7 for the
six representative types of matrices studied in Section VI.
In each figure, there are four performance curves that refer
to the reference dgesv and to the three iterative refinement
algorithms, dhgesv-TC, dhgesv, and dsgesv.

iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.0 E+00

FP32-->FP64 IR
FP32-->FP64 IRGM

iterations
0 1 2 3 4 5 6

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.0 E+00

FP16-->FP64 IR
FP16-->FP64 IRGM

iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.0 E+00

FP16-TC-->FP64 IR (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(a) Matrix of type 1: diagonal dominant.

iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =9.2 E+04

FP32-->FP64 IR
FP32-->FP64 IRGM

iterations
0 1 2 3 4 5 6 7 8 9

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =9.2 E+04

FP16-->FP64 IR
FP16-->FP64 IRGM

iterations
0 1 2 3 4 5 6

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =9.2 E+04

FP16-TC-->FP64 IR (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(b) Matrix of type 2: positive λ , where σi is a random number between 1
cond , and 1 such that their logarithms are uniformly distributed.

iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =1.4 E+03

FP32-->FP64 IR
FP32-->FP64 IRGM

iterations
0 40 80 120 160 200 240 280 320 360 400 440

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =1.4 E+03

FP16-->FP64 IR
FP16-->FP64 IRGM

iterations
0 1 2 3 4 5

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =1.4 E+03

FP16-TC-->FP64 IR (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(c) Matrix of type 3: positive λ with clustered singular values, σi=(1, · · · , 1, 1
cond).

iterations
0 1 2 3 4 5 6

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.3 E+04

FP32-->FP64 IR
FP32-->FP64 IRGM

iterations
0 20 40 60 80 100 120 140 160

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.3 E+04

FP16-->FP64 IR
FP16-->FP64 IRGM

iterations
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.3 E+04

FP16-TC-->FP64 IR (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(d) Matrix of type 4: clustered singular values, σi=(1, · · · , 1, 1
cond).

Fig. 4. Convergence history of the two proposed iterative refinement algorithms (IR and IRGM) for the three precisions studied (FP16-TC, FP16, and
FP32) and for different types of matrices—all of size 22,000 × 22,000, and having κ∞(A) varying between 101 and 105.

iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =3.8 E+04

FP32-->FP64 IR
FP32-->FP64 IRGM

iterations
0 1 2 3 4 5 6 7 8 9 10

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =3.8 E+04

FP16-->FP64 IR
FP16-->FP64 IRGM

iterations
0 1 2 3 4 5 6

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =3.8 E+04

FP16-TC-->FP64 IR (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(a) Matrix of type 5: positive eigenvalues and arithmetic distribution of its singular values σi = 1− (i−1
n−1)(1−

1
cond).

iterations
0 1 2 3 4 5 6

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =8.2 E+04

FP32-->FP64 IR
FP32-->FP64 IRGM

iterations
0 40 80 120 160 200 240 280 320 360 400 440

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =8.2 E+04

FP16-->FP64 IR
FP16-->FP64 IRGM

iterations
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =8.2 E+04

FP16-TC-->FP64 IR (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(b) Matrix of type 6: arithmetic distribution of its singular values σi = 1− (i−1
n−1)(1−

1
cond).

Fig. 5. Convergence history of the two proposed iterative refinement algorithms (IR and IRGM) for the three precisions studied (FP16-TC, FP16, and
FP32) and for different types of matrices—all of size 22,000 × 22,000, and having κ∞(A) varying between 101 and 105.

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0
2
4
6
8

10
12
14
16
18
20
22
24

2
4
2

2
32 2

3
2

2
32 2

3
2

2

32

2

3

2

2

3

2

2

3

2

2

3

2

2

3

2

2

4

2

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

(a) Matrix of type 1: diagonal dominant.

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0

2

4

6

8

10

12

14

16

18

20

22

24

2
6
3

2
63 2

6
3

2
6
3

2
7

3 2

7
3

2

7
3

2

7
3

2

7

3

2

7

3

2

7

3

2

7

3

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

105

106

(b) Matrix of type 2: positive λ , where σi is random number between 1
cond , and

1 is such that their logarithms are uniformly distributed.

Fig. 6. Performance in teraFLOP/s of the four proposed linear solvers (one standard solver and three iterative refinement solvers, respectively) for different
matrix sizes and different matrix types: 1) the FP64 standard dgesv solver (orange color with “×”), 2) the FP32 solver dsgesv (purple color with “4”),
3) the FP16 solver dhgesv (blue color with “�”), and 4) the FP16-TC solver dhgesv-TC (cyan color with “◦”). For the iterative refinement solvers, we
also depict the required number of iterations to achieve the FP64 arithmetic solution, and we note that “nc” mean no convergence after 200 iterations. Note
that the right “y” axis shows the condition number, κ∞(A).

Type Description
1 - Random numbers with diagonal modified to be dominant

2 Positive eigenvalue λ Random σ in [1
cond ,1] such that their logarithms are uniformly

3 Positive eigenvalue λ Clustered σ σ = [1, · · · ,1, 1
cond];

4 - Clustered σ σ = [1, · · · ,1, 1
cond];

5 Positive eigenvalue λ Arithmetically distributed σ σi = 1− (i−1
n−1)(1−

1
cond), i = 1..n, σi+1

σi
is constant

6 - Arithmetically distributed σ σi = 1− (i−1
n−1)(1−

1
cond), i = 1..n, σi+1

σi
is constant

TABLE II
DESCRIPTION OF THE TEST MATRICES, WHERE COND IS THE CONDITION NUMBER OF A.

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0

2

4

6

8

10

12

14

16

18

20

22

24

2
5
3

2
6
3

2
6
3

2
7
2

2
7

3 2

7

3

2

8
3

2

8
3

2

8

3

2

8

3

2

8

3

2

8

3

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

(a) Matrix of type 3: positive λ with clustered singular values, σi=(1, · · · , 1, 1
cond).

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0

2

4

6

8

10

12

14

16

18

20

211

7
2
158 3

179 3
20
9 324

10
3

32

10
3

36

11
3

42

12

3

59

12

3

88

13

3

154

14

3

330

14
FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

105

(b) Matrix of type 4: clustered singular values, σi=(1, · · · , 1, 1
cond).

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0

2

4

6

8

10

12

14

16

18

20

22

24

2
5
3

2
63 2

6
3

2
6
3

2
6

3 2

6
3

2

6
3

2

6

3

2

6

3

2

7

3

2

7

3

2

6

3

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

105

(c) Matrix of type 5: positive eigenvalues and arithmetic distribution of its singular
values, σi = 1− (i−1

n−1)(1−
1

cond).

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

221
8 342

9 3
73

10 3

116

11 3

199

12

3

nc

13 3

nc

14
3

nc

15

3

nc

17

3

nc

18

3

nc

20

3

nc

21

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

105

106

(d) Matrix of type 6: arithmetic distribution of its singular values, σi = 1−
(i−1

n−1)(1−
1

cond).

Fig. 7. Performance in teraFLOP/s of the four proposed linear solvers (one standard solver and three iterative refinement solvers, respectively) for different
matrix sizes and matrix types: 1) the FP64 standard dgesv solver (orange color with “×”), 2) the FP32 solver dsgesv (purple color with “4”), 3) the
FP16 solver dhgesv (blue color with “�”), and 4) the FP16-TC solver dhgesv-TC (cyan color with “◦”). For the iterative refinement solvers, we also
depict the required number of iterations to achieve the FP64 arithmetic solution, and we note that “nc” mean no convergence after 200 iterations. Note that
the right “y” axis shows the condition number, κ∞(A).

In Figure 6a, the matrix is diagonally dominant, and—
as shown in Section VI—all variants require three to five
iterations to converge. Thus, one can expect that the low
precision iterative refinement algorithms will bring a large
speedup compared to dgesv. Since the number of iterations
is small, we imagine that the speedup ratio will be similar
to the one observed in Figure 2b for the LU factorization.
We confirm our expectation by looking at Figure 6a. The
FP16-TC dhgesv-TC routine delivers a solution 4× faster
than its FP64 dgesv counterpart. Similarly, the dhgesv
variant shows a ≈3× speedup over the dgesv, and the
dsgesv variant shows a ≈1.8× speedup over the dgesv.
This is example illustrates the importance of using the low
FP16-TC precision in HPC.

Figure 6b shows the performance of our methods for
matrices with positive eigenvalue and logarithmic uniform
distribution of their singular values. As shown in the figure,
and similar to the previous graph in Figure 6a, the number of
iterations remains constant when the matrix size increases for
all algorithms. This type of matrix is marginally more difficult
for the FP16 variant than the diagonally dominant matrix
type—about 7 iterations vs. 3 iterations (Figure 6a). The
FP16-TC and FP32 variants require two to three iterations
for both examples. Thus, one can expect the performance gain
to be roughly similar to the diagonal dominant example. The
dhgesv-TC (FP16 →FP64) variant results in a speedup
of 4× over dgesv. The dhgesv (FP16 →FP64) routine
achieves the same solution as the dgesv and is about 3×
faster, while the dsgesv (FP32 →FP64) is about 1.7×
faster.

Figure 7a supports our findings that low precision tech-
niques can be used to speedup a linear solver by a large
factor. The performance results depicted here are similar to
the previous two examples, where dhgesv-TC, dhgesv, and
dsgesv outperform dgesv and provide around 4×, 2.6× and
1.7× speedups, respectively. In contrast to Figure 7a, Figure 7b
shows the performance and the number of iterations for
matrices that have similar clustered singular value distribution,
but their eigenvalues are not necessarily positive and can be
even complex. The observation made here is interesting. The
behavior of the dsgesv (FP32 →FP64) variant remains the
same as in the previous experiments, requiring two to three
iterations independent of the matrix size or matrix type. Thus,
we will always see a 1.7× speedup. For the dhgesv-TC,
the number of iterations increases compared to the previous
examples (10–14 iterations vs. 3 iterations). We also see that
the iteration count increases slightly with matrix size. Thus,
one can expect the performance of the dhgesv-TC here to be
slightly lower than in the previous example (while still being
about 3× faster).

For the dhgesv, the number of iterations increases dra-
matically with the matrix size and is larger than what was
depicted in Figure 7a. In this case, the rounding error of the
FP16 method—and possibly the range of the representative
numbers for FP16 arithmetic—disturb the LU factorization.
As a result, the convergence rate decreases dramatically, which

then affects the performance. In this case, we can see that
dhgesv is not beneficial at all and can be slower than FP64.
For such matrix types, the best practice is to use either the
Tensor Core version of the dhgesv-TC, which provides a
3× speedup, or to use dsgesv, which yields a 1.7× speedup.

Figure 7c shows results for matrices with positive eigen-
values and an arithmetic distribution of their singular values.
The dsgesv behavior stays the same as the one shown in the
previous graph and requires about 2 iterations, resulting in a
1.7× speedup over dgesv. We also note that the dhgesv-TC
routine acts similarly to dsgesv and converges in about 3
iterations, thereby making it an attractive routine to use in such
cases, where it offers a speedup of around 4×. The dhgesv
behavior is comparable to the other problem types with
positive eigenvalues, requiring about 7 iterations, regardless
of the matrix size. Thus, we obtain a speedup of around 2.6×.
The results in Figure 7d are similar to those in Figure 7c but
without the constraint of positive eigenvalues. Here, we note
that the dsgesv still converges in about 3–4 iterations for
any matrix size, leading to the observed 1.7× speedup, while
the dhgesv fails to converge within 400 iterations for most
of the large matrices, thereby making dhgesv useless in this
case and validating our discussion of Figure 5b in Section VI.
The attractive revelation is the FP16-TC implementation. The
V100 GPU’s FP16-TC feature does accumulation in FP32
arithmetic and is able to fix the issue of the FP16; in doing
so, it converges in about 10–20 iterations, netting a speedup
of around 3×.
Lesson: The speedups presented in Figures 6 and 7 confirm
our numerical analysis from Section VI, where we noted
that iterative refinement algorithms are advantageous and
exhibit very good speedups. The dhgesv-TC (FP16-TC
→FP64) routine can be used for all matrix types and for
any matrix size to provide speedups of about 3×–4×, and
the dsgesv (FP32 →FP64) routine can be used for all
matrix types and for any matrix size to provide speedups
of about 1.7×. The number of iterations is constant for
all matrix types and matrix sizes for dsgesv. It is
also constant for dhgesv-TC for matrices with positive
eigenvalues and only slightly increases for other cases.
The dhgesv (FP16 →FP64) is acceptable and provides
a speedup of around 2.6× when the matrix has good
properties (e.g., diagonal dominance) or when eigenvalues
are always positive.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We developed a framework of algorithms and their high-
performance implementations for exploiting GPU Tensor
Cores in mixed-precision FP16–FP32/FP64 iterative refine-
ment solvers. We demonstrated for the first time how to use the
Tensor Core to provide an additional FP16-TC performance
boost to solvers in high FP64 accuracy. We provided results
and analysis for a number of algorithms on different types
of matrices. Specifically, we showed practical cases where
even a highly optimized FP64-precision solver, running at

6 teraFLOP/s, can be accelerated up to 4×. The new develop-
ments introduced a new class of mixed-precision dense matrix
factorization algorithms that can be used as building blocks in
other mixed-precision algorithms.

The developments opened up opportunities for few future
work directions, including further optimizations, development
of a full set of mixed-precision factorization routines, and
release as open-source software. Also of interest is inves-
tigating the energy efficiency of the approach compared to
working precision implementations and other architectures.
One can expect that a 4X speedup will at least bring 4X
energy improvement. In our experiments, we observed about
5X energy efficiency improvement but we omit the details of
this improvement as we think it do not perfectly fit with the
subject of this paper and we will be studying it in more details
in future work.

REFERENCES

[1] M. Arioli, J. W. Demmel, and I. S. Duff. Solving Sparse Linear Systems
with Sparse Backward Error. SIAM Journal on Matrix Analysis and
Applications, 10(2):165–190, 1989.

[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov. Accelerating scientific computations
with mixed precision algorithms. Computer Physics Communications,
180(12):2526–2533, 2009.

[3] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and
J. Kurzak. Mixed precision iterative refinement techniques for the
solution of dense linear systems. Int. J. High Perform. Comput. Appl.,
21(4):457–466, Nov. 2007.

[4] E. Carson and N. J. Higham. A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear
systems. SIAM Journal on Scientific Computing, 39(6):A2834–A2856,
2017.

[5] E. Carson and N. J. Higham. Accelerating the solution of linear systems
by iterative refinement in three precisions. SIAM J. Sci. Comput.,
40(2):A817–A847, 2018.

[6] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[7] J. Dongarra, V. Eijkhout, and P. Łuszczek. Recursive Approach in Sparse

Matrix LU Factorization. Scientific Programming, 9(1):51–60, 2001.

[8] G. H. Golub and Q. Ye. Inexact preconditioned conjugate gradient
method with inner-outer iteration. SIAM Journal on Scientific Com-
puting, 21(4):1305–1320, 2000.

[9] A. Haidar, P. Wu, S. Tomov, and J. Dongarra. Investigating Half
Precision Arithmetic to Accelerate Dense Linear System Solvers. In
SC16 ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems, Denver, CO, 11/2017 2017. ACM, ACM.

[10] N. J. Higham. Iterative refinement enhances the stability ofqr factoriza-
tion methods for solving linear equations. BIT Numerical Mathematics,
31(3):447–468, Sep 1991.

[11] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2 edition, 2002.

[12] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. J.
Dongarraa. Exploiting the performance of 32 bit floating point arithmetic
in obtaining 64 bit accuracy. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006.

[13] X. S. Li and J. W. Demmel. Making Sparse Gaussian Elimination
Scalable by Static Piv oting 1 Introduction 2 New algorithm and stability.
In Proceedings of the 1998 ACM/IEEE conference on Supercomputing,
number c, pages 1–17, 1998.

[14] C. B. Moler. Iterative refinement in floating point. J. ACM, 14(2):316–
321, 1967.

[15] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm.
Technical Report 91-279, Department of CSE, University of Minnesota,
Minneapolis, Minnesota, 1991.

[16] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. and
Stat. Comput., 7(3):856–869, 1986.

[17] V. Simoncini and D. B. Szyld. Flexible inner-outer Krylov subspace
methods. SIAM J. Numer. Anal., 40(6):2219–2239, 2002.

[18] R. D. Skeel. Iterative Refinement Implies Numerical Stability for
Gaussian Elimination. Mathematics of Computation, 35(151):817–832,
1980.

[19] G. W. Stewart. Introduction to Matrix Computations. Academic Press,
1973.

[20] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra
for hybrid gpu accelerated manycore systems. Parellel Comput. Syst.
Appl., 36(5-6):232–240, 2010. DOI: 10.1016/j.parco.2009.12.005.

[21] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. In Proc. of the IEEE
IPDPS’10, pages 1–8, Atlanta, GA, April 19-23 2010.

[22] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall,
1963.

http://dx.doi.org/10.1016/j.parco.2009.12.005

	Introduction
	Related Work
	Contributions
	Methods
	Background
	Iterative Refinement
	Iterative Refinement with Preconditioned GMRES

	Algorithmic Advancements
	Tensor Cores in the V100 and their Use in Half-Precision LU
	Convergence Consideration

	Analysis and Expected Performance
	Numerical Behavior Discussion
	Experimental Results Discussion
	Conclusions and Future Directions
	References

